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Abstract

A potential technique for suppressing edge localized magnetohydrodynamic instabilities (ELMs)

is theoretically analyzed. Recent experiments have shown that externally generated resonant mag-

netic perturbations (RMPs) can stabilize ELMs by modifying the density profile [T. E. Evans, et

al., Nature Phys. 2, 419 (2006); Y. Liang, et al., Phys. Rev. Lett. 98, 265004 (2007)]. Driv-

ing toroidally asymmetric current internally, through the scrape-off layer (SOL) plasma itself, can

also generate RMPs that are close to the required threshold for ELM control. The limiting ion

saturation current densities can be achieved by producing potential differences on the order of the

electron temperature. Although the threshold is uncertain in future devices, if driven coherently

though the SOL, the upper limit for the resulting field would exceed the present experimental

threshold. This analysis provides the tools required for estimating the magnitude of the coherent

SOL current and RMP generated via toroidally asymmetric biasing of the target. Flux expansion

increases the RMP near the X-point, while phase interference due to the shearing of field lines

near the X-point reduces the amplitude of the effective SOL perturbation and makes the result

sensitive to both toroidal mode number n and the radial coherence width of the biasing region. If

the limiting current density decays rapidly enough radially, both the width and the amplitude of

the current density drawn from the target will be reduced. The RMP can still exceed the present

threshold at low n if the radial location and width of the biasing region are optimally chosen.
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I. INTRODUCTION

Tokamak fusion reactors face the significant challenge of limiting the expelled charged-

particle heat flux to acceptable levels for bounding wall components [1, 2], especially for the

target plates that handle the regions of highest flux. This limit, fundamentally set by the

atomic processes of surface melting and sublimation, is on the order of 0.5-1 kW/cm2 for the

choices of materials currently under consideration [3]. In a reactor, large plasma instabilities

that impulsively deliver energy flux to the target on fast time scales must be avoided. Aside

from unanticipated disruptions, the major impulsive fluxes in an H-mode tokamak plasma

are delivered by the so-called edge localized modes (ELMs). For the planned ITER facility

[4], the problem is significant [5–7], but it is even more severe in follow-on high power

tokamaks even when the operating point is well below ignition.

The largest ELMs, designated Type-I, are well-described by peeling-ballooning magne-

tohydrodynamic stability theory [8, 9] and are destabilized by both current and pressure

gradients. These two instability drives are closely related at the edge of an H-mode plasma

due to fact that much of the edge parallel current is driven by the bootstrap effect. Thus,

for a fixed plasma geometry, reduction of the edge pressure gradient is required to operate

below the ELM instability threshold. The application of resonant magnetic perturbations

(RMPs) to the plasma edge breaks the toroidal symmetry of the tokamak and induces en-

hanced three-dimensional transport, akin to transport processes active in stellarators. This

technique has been experimentally demonstrated on both DIII-D [10] and JET [11] to sig-

nificantly enhance H-mode particle exhaust [12–14], allowing the plasma density and, in

turn, the large edge pressure gradient to be reduced to a level below the peeling-ballooning

stability threshold [12, 13]. For given plasma conditions, the success of the technique re-

quires a threshold level of applied perturbation field B̃ relative to the main toroidal field

Bt. Although there are still paradoxes left to be resolved as to the exact nature of the

dominant transport mechanism [12, 15–17], and thus, the scaling of the threshold pertur-

bation strength with plasma conditions, experimentally, the essential requirement is that

B̃mn > 10−4Bt for the the flux surface averaged Fourier component of the perturbation field

that resonates with the pitch of the field lines at the plasma edge; i.e., m = qn where q is

the safety factor and m/n are the poloidal/toroidal mode numbers. Recent design studies

for ITER [18, 19] have assumed threshold values B̃mn/Bt ∼ 2− 5× 10−4.
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The possibility of controlling the edge pressure gradient and Type-I ELM stability is of

major importance for future burning fusion reactors. The creation of a resonant magnetic

perturbation of sufficient magnitude requires that the current-carrying coils that produce

this field be placed as close as possible to the last closed plasma surface. Placing coils

inside the vacuum vessel is difficult due to the engineering constraints on the maximum

forces that the coils can sustain; for instance, those generated during a disruption or vertical

displacement event [20]. Furthermore, it is difficult to place the coils inside of the neutron

shield, because the high neutron flux will cause the insulators in the coil structure to have

unreasonably short lifetimes [22].

The closest one can possibly place the perturbation currents to the plasma is on the

open flux surfaces just outside the plasma interior. For a tokamak, the region of interest is

the scrape-off-layer (SOL) just outside of the magnetic separatrix, where exhaust is carried

along open field lines to the divertor target. When the electrostatic potential difference

between the target and the plasma above the sheath is different from the floating potential,

a current will be driven along the open field lines connecting to the target. The current

is as close to the plasma as possible and is naturally well-aligned with the magnetic field

lines near theseparatrix. Hence, the magnetic perturbation field generated in the SOL is

highly resonant with field lines inside the separatrix. The main goal of the present analysis is

to determine whether the experimentally demonstrated RMP threshold for achieving ELM

control by external coils can be achieved by the SOL current technique.

Toroidally asymmetric electrostatic biasing was originally proposed [23–25] for a rather

different purpose: to increase the width of the high heat flux region in the SOL by driving

electrostatic convection cells that act to radially spread turbulence perpendicular to flux

surfaces. Biasing was experimentally implemented on the MAST spherical tokamak [26]

where a significant radial spreading of heat flux due to electrostatic convection was observed

[27–29]. Thermo-electric effects produced by imbalances in radiation and plasma pressure

[30, 31] can also be utilized for current drive. Ref. [23] proposed a variety of techniques that

are potentially useful in a high-power tokamak environment, such as toroidally asymmetric

gas puffing, wavy divertor plates, and spatially varying-conductivity divertor plates. Since

these effects do not change the magnitude of the ion saturation current itself, we describe

the conceptually simpler electrostatic technique throughout.

The resonant spectrum of the applied field is assumed to drive the effects of the perturba-
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tion on the plasma within. It is crucial to our analysis to observe that the critical thresholds

for ELM control are given in terms of the applied perturbation fields. This is because, in

the ELM control experiments to date, it has only been possible to measure the externally

applied perturbation fields, B̃ext, and not the fields internally generated by currents within

the plasma in response to the applied perturbations, B̃int. The response to resonant per-

turbations is particularly complicated by the fact that plasma rotation and drift flows will

tend to shield the total resonant field arising from the sum B̃ = B̃ext + B̃int in resistive

MHD and drift-MHD models [32, 33]. At the same time, the linear magnetic response of

a shaped toroidal plasma amplifies the least stable MHD modes and generates a different

effective resonant spectrum than the applied spectrum [34, 35]. While the plasma generally

reacts to the applied fields in a complex fashion, it has been experimentally demonstrated

that the ELM control effects can be parameterized in terms of the magnitude of the applied

field. Modeling of internal plasma processes is beyond the scope of this work.

This article is the first part of a series of two articles elaborating the analysis of this

potential ELM control technique. Part I derives the magnitude of the coherent SOL current

that can be produced in the scrape-off layer via toroidally asymmetric biasing of the target.

The magnitude of the RMP that can be generated is estimated from the ion saturation

current density that can be drawn from the divertor target. Part II (Ref. [36]) presents

the details of the derivation of the spatial structure of the magnetic perturbation near the

X-point and the analysis of the resonant spectrum near the separatrix.

Section II of this article describes the qualitative analysis that can be used to estimate the

RMP amplitude neglecting interference effects. This perturbation strength is an estimate

for the magnetic field that can be generated near the target plate and represents an order of

magnitude estimate for the upper limit of the surface-averaged RMP that can be generated

near the separatrix. After presenting the basic approach (Secs. II A-II B), the current

density and RMP amplitude are estimated from published data for DIII-D and MAST (Sec.

II D) and models for the ITER divertor (Sec. II E). For these cases, if the current density

that can be drawn from the target plates were to be driven coherently through the SOL,

the resulting perturbation would be large enough to exceed the current experimental ELM

control threshold. Consideration of the field line behavior near the X-point in Sec. III

determines the spatial structure of the current density profile in Sec. IV. Flux expansion

plays an important role in increasing the magnitude of the RMP near the X-point (Sec.
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V A). However, Sec. IV C shows that destructive phase interference will occur between

neighboring flux surfaces above the X-point if the radial profile of the current density is

wider than the coherence width (Eq. 23). This width depends both on the distance from the

strike point and the divertor geometry. In a certain sense, short divertor legs have “twice”

the coherence of long divertor legs (defined in Sec. IV B).

Section V calculates the effect of phase mixing by considering the efficiency of the SOL

current drive for different current density profiles. In general, the RMP amplitude is opti-

mized when the width of the biasing region is equal to the coherence width and is optimized

at low toroidal mode number n. For a step-wise constant radial profile (Sec. V C), the

effective SOL surface current is proportional to 1/n. For an exponentially decaying profile

(Sec. V D), strong phase mixing will exponentially reduce the efficiency unless the biasing

region has at least one sharp radial boundary. If the edge location is optimally chosen,

biasing only the inner or outer portion of the wetted area can still produce more than half of

the maximum value attained for the optimal width. Using the current drive efficiency, Sec.

VI estimates the magnitude of the RMP that can be driven including the effects of phase

interference and reduced target current density. The largest RMPs can be produced at low

n in a compact divertor with short divertor legs. The ability of the technique to control

ELMs will depend on the amount of coherent SOL current that can be produced and the

actual RMP threshold in future devices.

Gaussian CGS units are used throughout except when practical considerations make

mixed, “engineering units” more appropriate.

II. QUALITATIVE ANALYSIS

A. Generating the Perturbations

Consider a divertor target that can actively generate a toroidally asymmetric electrostatic

potential. The spatial pattern of the bias voltage over the divertor floor significantly affects

the spatial pattern of the driven current. In the most flexible design, the divertor floor

can be made of a number of tiles electrically insulated from each other so that each can be

connected to an independent power supply. Such a system would control both the radial and

the toroidal distribution of the current. In particular, one could consider biasing a radially-
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narrow ring on the divertor floor, with a sinusoidal toroidal variation. In a less flexible design,

one can think of a divertor floor made of several independently biased toroidal segments.

This latter arrangement does not allow for control of the radial structure of the current,

which will be determined solely by the radial variation of plasma parameters.

It will be assumed that the SOL current density flows through a region that is radially

much thinner than the minor radius. This is certainly true if the characteristic width of

the current channel is set by the width of the SOL. Extremely wide distributions would not

satisfy the assumption of being close to the plasma, nor would they efficiently utilize the

space within the vacuum vessel. This implies that one can assume that the current flows

within a relatively thin sheet near the separatrix, both along the divertor leg and over the

surface of the confined plasma. Figure 1 illustrates the surface current pattern that would

result from a set of 6 radially narrow biasing regions that alternate in polarity to produce a

periodic perturbation with toroidal mode number n = 3.

The assumption of a surface current density near the separatrix leads to a simple estimate

for the magnetic field perturbation strength. For observation points that are closer to the

SOL current than either the poloidal or toroidal wavelength of the current density pattern,

the magnetic field will appear to be produced by a surface current which is nearly constant

in space. For these points, one can estimate the magnetic field perturbation by the usual

formula for the tangential discontinuity in the field [B] produced by a surface current density

K. The estimate for the perturbation field is B̃ = [B]/2 = 2πK/c, where c is the speed of

light. Hence, an estimate of the surface current density allows one to estimate the magnetic

field perturbation.

B. Target Plate Current Density

The maximum current density that can be made to flow through the sheath is the ion

saturation current density. The simplest estimate for the current-voltage characteristic of the

plasma sheath assumes that the plasma is collisional enough to keep the electron distribution

function Maxwellian. Where the field lines travel from the plasma to the target, the parallel

current density is given by the expression [37]:

J‖ = ene

{
ui −

vte
2
√
π

exp

(
−eφs
Te

)}
, (1)
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where the sheath potential φs = φp − φw is the difference between the electric potential in

the plasma just above the sheath φp, and the electric potential at the material wall φw. The

other quantities are taken on the plasma side of the sheath: ne is the electron density, Te,i

are the electron and ion temperatures, vte =
√

2Te/me is the characteristic electron thermal

speed, e is the magnitude of the electron charge, and me,i are the electron and ion masses.

The parallel ion flow, ui, is of the order of the sound speed cs =
√

(γeTe + γiTi)/mi, where

Ti is the ion temperature and the adiabiatic index for each species is γe,i. For an unbiased

plate, with an isothermal sheath (γe,i = 1) and equal ion and electron temperatures, the

estimate for the floating potential is

eφf = Te log (vte/2
√
πui) (2a)

' 1

2
Te log (mi/4πme). (2b)

Assuming a deuterium plasma with Maxwellian electrons yields eφf/Te = 2.8, and more

accurate estimates for the ratio eφf/Te are in the range 2−4, depending on plasma conditions.

The single probe characteristic,

J‖ = Jsat {1− exp (e(φf − φs)/Te)} , (3)

demonstrates that if the sheath potential is altered from φf by Te/e, a current density on

the order of the ion saturation current density,

Jsat = eneui, (4)

will flow parallel to field lines. Assuming that the ion velocity is ui ∼
√

(Te + Ti)/mi,

one obtains the following equation relating the saturation current to the parameters of a

deuterium plasma:

Jsat = 1.57
A

cm2
×
( n

1013cm−3

)( T

eV

)1/2

. (5)

When a current flows across the sheath, charge conservation requires the current to

eventually return by flowing through another material surface. The actual current density

that flows thus depends on the geometry of the flow pattern as well as the plasma sources

that determine the electron density, temperature, and floating potential at each end of the

field line. The resulting flow can be affected by the effective collection area of each material
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surface [24], as well as the effective circuit determined by the multiple conductors involved

[25]. In the simple situation where the current flows between two surfaces with the same

area and floating potential, but are biased with respect to one another with potential φb,

the double probe characteristic

J‖ = Jsat tanh (eφb/2Te), (6)

shows that the ion saturation current is the maximum current that will flow.

An estimate for the surface current density also requires an estimate for the width over

which the current is driven at the target. The width at the target is determined both by

the radial variation of the bias potential and by the profiles of density and temperature

across the target that determine Jsat. Figure 2 illustrates the radial profile of Jsat (thick

black) and schematic profiles for the driven current that may possibly develop from a given

biasing stategy: a step-wise constant profile (thin shaded blue), an exponentially decaying

profile with a sharp outer edge resulting from biasing the inner side of the target plate

(dotted red), an exponentially decaying profile with a sharp inner edge arising from biasing

the outer part of the target plate (dashed green). In the figure, radial distances are defined

in flux space ψ. The distance of the center of the current channel from the strike point is

defined by δψ or by the distance δr orthogonal to flux surfaces. For a step-wise constant

profile, one would use the average density Javg over the full width ∆ψ or ∆r orthogonal

to flux surfaces. However, if the profiles are highly peaked and decay exponentially, it is

conventional to use the maximum density Jmax and the e-folding flux Λ2 or the e-folding

distance λ orthogonal to flux surfaces. For a thin current channel, the values are defined so

that Ksat = Javg∆r = Jmaxλ.

C. Estimating the RMP Amplitude

The estimate for the characteristic magnetic field that can be produced near the target

is given by

B̃sat = 2πKsat/c. (7)

In Part II, it will be shown that the SOL current-generated field is predominantly pitch-

resonant near the plasma edge. If the SOL current drive were perfectly efficient, B̃sat would
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be also be an order of magnitude estimate for the RMP averaged over a flux surface near the

separatrix. Section V is devoted to analyzing the reduction of SOL current drive efficiency

by phase interference and more accurate estimates are described in Sec. VI. Hence, B̃sat is

best thought of as an upper limit for the characteristic magnitude of the RMP that can be

produced.

The preceding estimate requires further qualification because the resonant and non-

resonant perturbation fields both vary strongly in space. The effective surface current density

actually increases with flux expansion near the X-point (Sec. V A). This implies that for a

configuration with “long” divertor legs, the field near the X-point is much larger than the

field near the target plate, but then decays farther away. In Part II, it will be shown that

B̃sat represents a good estimate for the average field amplitude for a certain range of flux

surfaces near the edge. For a system with “short” divertor legs, B̃sat is already the maximum

field and the RMP estimate must be reduced from B̃sat by the appropriate average over the

surface. The precise definition of “long” vs. “short” is given in Sec. IV B.

For estimates for the fusion devices described next, we consider scenarios where the

current is driven much closer to the strike point than the length of the divertor leg. In this

case the divertor legs can be considered to be “long” and one can take B̃sat to represent an

estimate for the upper limit of the RMP amplitude.

D. Estimates for DIII-D & MAST

If the biasing technique does not substantially change the plasma conditions above the

target, an upper limit is given by the total parallel particle flux across the plasma wetted

area of the unbiased target. Estimates for the width for current tokamaks can then be

taken from Langmuir probe measurements of the parallel particle flux or other diagnostics

of density and temperature. A very wide variation of divertor plasma parameters occurs in

practice as power input and target density and temperature are varied. In Table I, a range

of values for DIII-D and MAST is reported based on the published data described below.

For DIII-D, Refs. [38–40] report peak values for the outer strike point in the ranges

Jsat ∼ 5 − 30 A/cm2 over roughly λ ∼ 2 − 3 cm and show temperatures in the range

Te ∼ 20 − 40 eV. This corresponds to densities in the range ne ∼ 1 − 3 × 1013 cm−3. The

radiative divertors observed in Ref. [41] achieve much higher densities ne ∼ 0.5 − 2 × 1014
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cm−3, at lower temperatures Te ∼ 1−2 eV, over similar widths, leading to even higher peak

values Jmax ∼ 10− 40 A/cm2. Over the full range, one estimates values of Ksat ∼ 10− 100

A/cm and the upper limit B̃sat ∼ 6− 80 G.

For MAST, Refs. [27–29] report peak values in the range Jmax ∼ 0.5 − 2 A/cm2 corre-

sponding to densities ne ∼ 0.5 − 3 × 1012 cm−3 and temperatures Te ∼ 10 − 40 eV. For

MAST there can be a wide variation in divertor leg length and flux expansion at the target;

here, we estimate λ ∼ 2 − 5 cm. Over the full range, one estimates Ksat ∼ 0.9 − 10 A/cm

and the upper limit B̃sat ∼ 0.4− 6 G.

E. Estimates for ITER

A first-principles technique to extrapolate the divertor target profiles to future fusion

devices is still lacking. The decay lengths are determined by the balance between sources

and transport in the SOL and depend upon the details of many different processes that may

be active including MHD, turbulence, and neoclassical transport. Scaling results [6, 42, 43]

have had mixed success and are not commonly agreed upon. Here, an estimate for Ksat will

be based on the same 2D edge fluid code models that were used to evaluate the ITER divertor

design. Transport is modeled by radial transport coefficients adjusted to fit midplane profiles

to experimental data and cannot be considered predictive. Thus, the estimates here must

be treated with caution.

The standard ITER divertor is partially detached in order to reduce heat flux at the

strike point, leading to a wide range of values for plasma parameters along the target plate.

Kukushkin [44] reports upon a detailed campaign of 2D edge fluid modeling for the ITER

divertor using the B2-EIRENE code [45]. Figures 2 and 6 of Ref. [44], show that along the

outer midplane near the separatrix nm ∼ 4 × 1013 cm−3 and Tm ∼ 200 eV and decay to

small values over 2− 3 cm. Along the target plate Tt ∼ 1− 2 eV over the first 10− 20 cm

where neutrals are strongly recycling and then rises to Tt ∼ 10 − 20 eV further away. The

standard 2-point model [37] for the downstream density at the target leads one to estimate

nt = nmTm/2Tt. Right near the strike point, this leads to large peak values nt ∼ 1−2×1015

cm−3, and Jmax ∼ 200− 400 A/cm. Using the higher temperatures further along the plate,

one would obtain nt ∼ 2−4×1014 cm−3 and Jmax ∼ 100−300 A/cm. Due to strong particle

recycling, the width at the target and the total surface current is difficult to estimate from
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this data.

Modeling for the ITER base case [47] using the UEDGE code [46] is in good agreement

with the B2-EIRENE model at the outer midplane. The parallel ion flux density reaches

a peak of 300 A/cm2 with a decay length of ∼ 2 − 3 cm, and leads to a total parallel

particle flux Ksat = 830 A/cm. This yields the upper limit B̃sat ∼ 520 G, a factor of 10−2

of the main toroidal field of 5.3T. This factor is 20 − 100 times larger than the critical

resonant field that is needed to suppress ELMS. In Table I, estimates for Ksat are derived

by combining the previous range for Jsat with the UEDGE value for λ. This leads to the

range Ksat = 200− 1000 A/cm and B̃sat = 100− 800 G.

III. X-POINT GEOMETRY

The X-point region plays a key role in all that follows. Therefore, here, we define the

essential features of divertor geometry needed to describe the structure of the driven current

density and perturbation fields near the X-point. Consider a large-aspect ratio tokamak of

major radius R, minor radius a, divertor leg length `, toroidal field Bt, poloidal field Bp, and

plasma current Ip. Due to the axial symmetry of a tokamak along the toroidal angle ζ, the

field lines are constrained to lie along the magnetic flux surfaces defined by the contours of

the poloidal magnetic flux function Aζ = A · (∂x/∂ζ); i.e., the covariant toroidal component

of the vector potential in a suitable gauge. Assuming that little toroidal current flows in the

vicinity of the X-point, the poloidal flux satisfies the source-free Grad-Shafranov equation

which simply reduces to the Laplace equation to lowest order in distance from the X-point.

For the generic X-point shown in Fig. 3(a), a system of orthogonal coordinates x, y can be

always chosen to align with the separatrix so that x lies along the outer divertor leg and

that y lies along the branch that connects to the inner midplane. With this choice, the

coordinates {x, y, ζ} are only right-handed with an appropriate choice for the direction of ζ.

Since the poloidal field vanishes to first order, the vector potential can be chosen to vanish

to second order,

Aζ = −RB′pxy (8)

where B′p is the poloidal field gradient at the X-point. For a more general coordinate system,

the magnitude is defined by the determinant of the 2-dimensional matrix of second order
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derivatives of Aζ at the X-point:

(RB′p)
2 = | det (∇i∇jAζ)| (9)

(in the constant ζ plane). In the vicinity of the X-point, the field line “equations of motion”

are

dx/dζ = −xR/Rs dy/dζ = yR/Rs, (10)

where the shear radius is defined by the relation Rs ≡ Bt/B
′
p. The physical meaning of Rs

can be elucidated by introducing the poloidal field scale length rp ≡ Bp0/B
′
p, defined by a

normalizing poloidal field Bp0 such as the field at the outer midplane.

The toroidal distance that a field line will travel over a poloidal field scale length is 2πRs

where Rs ∼ rpBt/Bp0. The dimensionless ratio that regulates the ratio of toroidal to poloidal

motion is

q∗ = Rs/R = Bt/RB
′
p. (11)

This number acts like an effective “safety factor” for field lines near the X-point. The

solutions to the equations of motion are

x = x0 exp (−(ζ − ζ0)/q∗) y = y0 exp ((ζ − ζ0)/q∗), (12)

given the initial conditions x(ζ0) = x0 and y(ζ0) = y0. The two constants of the field line

motion can be taken to be

ψ = xy ζ0 = ζ − q∗ log
√
|y/x|. (13)

The first constant is simply the poloidal flux near the X-point, while the second constant is

the field line label. The trajectories exponentially contract along the x direction aligned with

the divertor leg and exponentially expand along the y direction aligned with the separatrix

as the field line is traversed in the +ζ direction. The directions of contraction and expansion

switch as the field line is traversed in the −ζ direction. Since the equations of motion are

linear, small deviations of the trajectories also follow the same equations near the X-point.

An initially circular flux tube near the divertor target will exponentially stretch along the

separatrix and exponentially shrink across the separatrix as it passes in the vicinity of the

X-point in the +ζ direction and vice-versa in the −ζ direction [48].
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For a definite example, consider the simple two-wire model of a diverted plasma: an

external coil carrying a current Id parallel to the plasma current Ip generates a field null

along the line connecting the two coils as shown in Fig. 3(b). If a is the distance from

the X-point to the center of the tokamak and d is the distance from the X-point to the

external coil, then the condition that the poloidal field vanishes is Ip/a = Id/d. Note that

a is naturally elongated relative to the minor radius at the outer midplane. Relative to the

poloidal field without the divertor coil, the poloidal field gradient scale length is

rp =
Bp0

B′p
' 1

(a−1 + d−1)
. (14)

In the case of a compact divertor where d << a, rp = d, while for equal plasma and coil

currents (Ip = Id), rp = a/2. The shear length can be seen to be a fraction of the original

connection length Rs ∼ (rp/a)qaR, where qa = (Bp0/Bt)(a/R) is the edge safety factor of a

circular tokamak without the divertor coil. For the effective safety factor, q∗ ∼ (rp/a)qa. In

the typical case of nearly equal currents Ip = Id, the divertor is symmetric and q∗ ∼ qa ∼

2− 5. When Ip > Id the divertor becomes very compact in the sense that rp/a ∼ 1/5− 1/2.

In this case, one could obtain values as low as q∗ ∼ 1.

Although only indirectly related to the field line motion, let us also define two other

useful coordinates: the Euclidean distance from the X-point r = x2 + y2 and the conformal

conjugate coordinate that is orthogonal to ψ

τ = (y2 − x2)/2. (15)

IV. SOL CURRENT DENSITY

A. Spatial Structure

The current that is produced will flow along the field lines for a substantial distance

from the divertor target. Dissipative effects (considered in Ref. [24]) lead to a decay of

the parallel current on a length scale which is much longer than the characteristic distances

of interest in this work, the shear length and divertor leg field line length. Because there

is little perpendicular current, charge conservation implies that the parallel current density

within a flux tube J‖/B, must essentially be constant along a magnetic field line: 0 = ∇·J '
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B · ∇J‖/B. In the following, we neglect the variation of the field strength, and set B =

constant.

The parallel current density can only depend on the two constants of the field line motion

ψ and ζ0 defined in Eq. 13, and can be Fourier expanded over toroidal harmonics of ζ0. Each

toroidal harmonic n will be treated individually, so that one can assume

J‖(ψ, ζ0) = J(ψ) cos [nζ0 + χ(ψ)]. (16)

The perturbation phase is defined by the argument of the cosine in Eq. 16,

ϕ = nζ +m∗ log
√
y/x+ χ(ψ). (17)

The parameter

m∗ = nq∗ ∼ nqa(rp/a) (18)

regulates the phase coherence of the current density pattern in the vicinity of the X-point.

If we estimate qa ∼ 3 and a large scale divertor with rp/a ∼ 1, then m∗ ∼ 3n. In a compact

divertor where rp/a ∼ 1/3, then m∗ ∼ n.

Note that biasing the inner part of the strike point can also produce some current in the

private flux zone. Because the current density is in phase along the divertor leg, the private

flux current acts to enhance the perturbation field from the divertor leg. This current does

not travel to the SOL, but over to the adjacent divertor leg. Since the region of large Jsat in

the private flux zone is typically very thin, the contribution from the adjacent divertor leg

will be neglected.

B. Phasing for Long vs. Short Divertor Legs

The phase structure of the current density in the plasma is sensitive to the phasing at

the target plate. If the phase is constant radially across the target plate, there are two

extreme cases where simple limits are realized: “long” divertor legs and “short” divertor

legs, depending on the length of the divertor leg ` compared to the distance from the strike

point to the biasing region δr and width ∆r. We use this simple conceptually motivated

terminology throughout, and the subscripts ` and 0 are used to distinguish the two cases,

respectively.
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For long divertor legs the divertor leg length ` is much larger than the location δr = δψ/`

and width ∆r = ∆ψ/` of the current profile at the target. Long divertor legs can be treated

as the simple case where the perturbation is driven with constant phase radially along the

location of the divertor target at x = `. In this case the phase is

ϕ`(x) = nζ −m∗ log |`/x|+ χ` (19)

where χ` is the phase at the target at x = ` (on the plane ζ = 0).

The parallel current density for long legs (Eq. 19) is shown in Fig. 4(a). One can see

that along the divertor leg, there are large regions of current density which are all in phase.

However, along the upper branch of the separatrix in the SOL, the pattern of current density

becomes strongly sheared. The flux surfaces become aligned with the y direction, while the

phase is still aligned with the x direction. Thus, above the X-point, the strong shear in field

line motion causes the phase of the current density to vary across flux surfaces.

Often the divertor legs are short, a choice that can be used to enhance flux expansion at

the target. In this case, the phase of the perturbation can be taken to be constant along a

line that connects to the X-point. Figure 4(b) illustrates the current density pattern in the

limit of extremely short divertor legs, where the phase is constant along the line y = x. In

this case, the location is δr =
√

2δψ, the width is ∆r ' ∆ψ/δr, and the phase would be

ϕ0(y/x) = nζ −m∗ log
√
|y/x|+ χ0 (20)

where χ0 is now the phase along the line y = x near the X-point (on the plane ζ = 0).

For the previous estimates in Sec. II D and II E, the long configuration was considered.

However, for constant phase across the target, the angle of the target plate with respect

to the magnetic field can also be used to interpolate between the two configurations. In a

flexible biasing scenario with radial control over the phase, different configurations can be

realized if the phase at the target plate can be used to compensate for the shearing of field

lines along the leg. ITER may have some flexibility in this regard due to the sharply inclined

target plates. The large target plate current density may also allow the biasing region to be

placed further away to achieve the “short” configuration.
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C. SOL Phase & Coherence Width

The phase difference between the current density on neighboring flux surfaces at ψa and

ψb at a fixed point in y, can be determined by substituting the field line position along the

divertor leg xa,b = ψa,b/y into Eqs. 19 and 20. For long legs, the result for the SOL phase

difference

∆ϕ`(y) = ϕ`,b − ϕ`,a = −m∗ log (ψb/ψa) (21)

is completely independent of poloidal distance along the surfaces. Although the phase along

a flux surface does vary poloidally, two neighboring flux surfaces always maintain the same

phase difference far from the X-point. Because the phase depends logarithmically on ψ, a

fact that was simply dictated by the field line motion, it is actually a ratio between radial

positions that leads to a fixed phase difference. The current density between the flux surfaces

will be out of phase once ∆ϕ = ±π. At this point, the ratio between the two radial positions

can be taken to define the coherence ratio:

κ` ≡ ψb/ψa|∆ϕ`=−π = exp |π/m∗|. (22)

The corresponding radial displacement can be taken to define the coherence width:

σ` ≡ ψb − ψa|∆ϕ`=−π = 2
√
ψaψb sinh (|π/2m∗|), (23)

which is defined relative to the geometric mean of the inner and outer positions. For m∗ >>

π, the coherence width becomes small since σ`/ψ ∼ π/|m∗|. For long legs, the special value

m∗ = π log 2 ' 4.5 yields κ` = 2 and σ` ' 71% of the geometric mean. As an example, the

shaded region in Fig. 2 represents a coherence region.

If the divertor legs are short, the phase coherence between neighboring flux surfaces is

“doubled.” The phase difference at constant y, is half of the previous result

∆ϕ0(y) = −(m∗/2) logψb/ψa. (24)

Thus, the coherence ratio in this case κ0 = exp |2π/m∗| is κ2
` , the previous ratio squared (Eq.

22). Similarly, the coherence width σ0 = 2
√
ψaψb sinh (π/m∗) is twice as large as Eq. 23 at

large m∗. Although the legs may be short, we note that the phase shearing is anti-symmetric

across the line x = y, so that phase difference at constant x is simply −∆ϕ0. For the special

value m∗ = 4.5, this yields κ0 = 4 and the σ` = 150% of the geometric mean.
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Consider the phase differences between the three neighboring flux surfaces attached to

the divertor target on the right-hand side of Fig. 5(a). The current density along these flux

surfaces is shown in Fig. 5(b), where the independent axis is chosen to be a function of a

coordinate which is always perpendicular to flux surfaces. The independent axis is actually

chosen so that the phase is easily determined by visual inspection; the choice sinh−1 τ causes

the phase to vary periodically far from the X-point. The phases are meant to be compared to

that along the reference surface (solid black). Along the divertor leg where τ ' −x2/2 < 0,

one can see that all flux surfaces are in phase. However, in the SOL, where τ ' y2/2 > 0,

the flux surface which is displaced inward by a factor of κ
−1/2
` ' 0.71 leads in phase by π/2,

while the flux surface which is displaced outward by the factor κ
1/2
` ' 1.4 lags in phase by

π/2. Hence, the two displaced flux surfaces are π out of phase with respect to one another.

V. EFFECTIVE SOL SURFACE CURRENT

A. Definition & Effect of Flux Expansion

Assume that the current density will be driven in a relatively thin layer surrounding the

separatrix. On flux surfaces further away than the width of the current distribution, the

perturbation will appear to be generated by what is effectively a parallel surface current

density, K‖. There are two distinct geometric effects that affect the result: flux expansion

increases the surface current amplitude near the X-point, while the shearing of phase between

neighboring flux surfaces causes a reduction of the net surface current as it travels beyond

the X-point region.

The net surface current density K‖ across flux surfaces is defined by the integral K‖ =∫
J‖d`r, where `r is the radial distance orthogonal to the flux surfaces. This definition can

be rewritten as

K‖(τ) =

∫ ψb

ψa

J‖(ψ, τ)dψ/|∇ψ| (25)

where the factor |∇ψ| = r, accounts for the flux expansion across the region. Far from

the X-point, K‖ = Javg∆ψ/r, where r is the distance to the region. Near the X-point,

K‖ = Javg∆r ' Javg∆ψ/δr for a thin region.

This simple definition leads to an important, yet counter-intuitive, dependence of K‖

on flux expansion. If one were to integrate a purely poloidal current density Jp across a
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flux surface, one would obtain a poloidally-directed current. Current continuity ∇ · J = 0

ensures that this current is conserved and, thus, forces Jp to be inversely proportional to

flux expansion. In this case, the purely parallel component J‖ is conserved along a field

line and must be independent of flux expansion. But then, integration across a flux tube

implies that the surface current density must be proportional to flux expansion. This does

not violate a conservation law, because one still needs to integrate over a poloidal distance

to define a net current.

Physically, flux expansion causes the distribution of current density to expand in the

direction normal to the flux surface and contract in the direction tangential to the flux surface

as the X-point is approached. Conservation of the parallel current does occur over a region

that contracts poloidally as it expands radially to conserve area; i.e. in flux coordinates.

Consider displaying a very narrow current density profile in the conformal coordinates,

∆ψ = xy−δψ and τ , which are designed to “unwrap” the current density along the mean flux

surface. The resulting profile shown Fig. 6(a) clearly displays the way in which the extremal

“lobes” of current density marked by the letters a,b,c,d,e must expand normally and contract

tangentially as the X-point is approached. Since the surface current is parameterized by the

direction along the surface, its magnitude must increase as its wavelength decreases in order

to represent the same magnitude of total current in each peak. The result is shown in Fig.

6(b).

The discontinuity in the magnetic field perturbation must contain the same dependence

on flux expansion. This increase is equal to the longer radial distance that one could bias a

device with short divertor legs. For long divertor legs, flux expansion is determined by the

distance to the target, while near the X-point, flux expansion is determined by the distance

rX =
√

2δψ =
√

2`δr. Thus, the field perturbation near the X-point B̃X/B̃sat = `/rX =√
`/2δr is even larger than that near the divertor leg. For ITER parameters, assuming ` ∼ 1

m, and δr ∼ 2− 3 cm, this leads to a factor of ×6− 7 enhancement.

The total current contained within one of the “lobes” in Fig. 4 is conserved and is equal

to the total current passing through each of the 2n biasing regions. This current can be

evaluated as the integral of the surface current density over a poloidal length that covers

one half of a phase period:

Ilobe =

∫ ϕ=π

ϕ=0

d`pK‖. (26a)
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Since d`p = dy|Bp/By| = dy|r/y| = rdϕ`/m∗, one obtains

Ilobe =

∫ π

0

dϕK‖r/m∗ = Javg∆ψ/m∗. (26b)

This is equal to the elementary result that would be obtained by integrating half of a period of

the current passing through the divertor target Ilobe = Javg(B
′
p`/Bt)R∆r/n = Javg`∆r/m∗.

Estimates for the lobe current are given in Table I.

B. Current Drive Efficiency & Effect of Phase Interference

An even stronger effect is the phase interference that arises from the shearing of field lines

near the X-point. Along the target plate, the phase is constant as one integrates across the

flux surfaces, and all surfaces add coherently. However, above the X-point in the SOL, the

destructive interference of the phases between neighboring flux surfaces causes the integrated

surface current to depend on the width of the drive near the target in an oscillatory fashion.

Since the surface current is simply an integral over the current density, the surface current

will have an extremum whenever one of the edges satisfies J‖(ψa,b, y, ζ) = 0; i.e. at constant

y.

For long divertor legs (Eq. 19), this leads to local maxima in the total surface current

whenever the outer edge ψb satisfies

log (ψb/δψ) = (4pb + 1)π/2m∗ (27)

for any integer pb, where δψ, is defined by the relation m∗ log (kδψ/y) = −(nζ + χ). Local

maxima also occur whenever the inner point ψa satisfies

log (ψa/δψ) = (4pa − 1)π/2m∗ (28)

for any integer pa. Thus, there are maxima when the ratio satisfies

log (ψb/ψa) = (2p+ 1)π/m∗ (29)

for some integer p. Optimization with respect to power consumption clearly requires all

current density to be in phase, so that the width would stay below the coherence width

(p = 0).

Phase mixing is “half” as strong in the case of short divertor legs, where the drive is

constant near the X-point. This is because the phase in Eq. 20 at constant y now depends
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on (m∗/2) log(ψ/y2). This implies that for large m∗ the surface current drive is twice as

great as the case of long legs.

In the next two subsections, the goal will be to describe the efficiency with which current

can be driven. Given the average distance of the current channel from the X-point rt =

`,
√

2δψ (long, short), one can define the efficiency in a manner that accounts for the natural

variation due to flux expansion. Along the divertor leg

εleg = |rKleg|/rtKsat (30a)

for phase at constant x (evaluated at large x), and along the SOL

εsol = |rKsol|/rtKsat (30b)

for phase at constant y (evaluated at large y). The case of long legs is treated explicitly.

The equations will still be valid for the SOL for the case of short legs after the replacement

m∗ → m∗/2. The difference is that the case of short legs displays a symmetry across the

line x = y, so that any divertor leg amplitude would be equivalent to the SOL amplitude.

C. Step-wise Constant Profile

Assume that the driven current density profile is approximately constant over the biasing

region ψ ∈ [ψa, ψb], as in the case of the shaded (thin blue) curve in Fig. 2. In the SOL, it

is clear that only the last coherence width will positively reinforce the surface current. In

Section II A, it was argued that for constant current density, the maximum surface current

that can be drawn between ψa = 0 and ψb is rtKsat = Javgψb. The efficiency of current drive

over the divertor leg is simply

εleg = |rKleg|/rtKsat = ∆ψ/ψb (31)

(for large x at constant x).

Substitution of the phase (Eq. 19) into the expression for the surface current (Eq. 25)

yields the result

rKsol =

∫ ψb

ψa

Javg cos (nζ −m∗ log |`y/ψ|+ χ)dψ (32a)

= − Javgψ√
1 +m2

∗
sinϕsol

∣∣∣∣∣
ψb

ψa

(32b)
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ϕsol = ϕ` − arctanm−1
∗ . (32c)

(for large y at constant y). For a region that is thinner than the coherence width, the

maxima of Ksol are close in value to Kleg. As the width approaches σ`, the SOL surface

current will become smaller and develop a phase shift. For large m∗, the SOL current is

reduced by a factor of 1/m∗ and phase shifted by π/2. The surface current is maximized by

using as large of an outer edge as possible and an inner edge exactly one coherence width

away. For a width of σ`, the efficiencies are determined by the maximum over toroidal phase:

εleg,cw = 1− κ−1
` (33a)

εsol,cw = (1 + κ−1
` )/

√
1 +m2

∗. (33b)

Figure 7 (a) plots the efficiency εsol (thin blue) that is obtained for m∗ = 4.5 as the

inner edge is varied ψa when the outer edge is fixed at ψb = 1. One observes characteristic

logarithmic oscillations on the scale of κ`, e.g. the maximum at ψa = 0.5. The oscillations

become small as ψa → 0. This is because as the inner edge is moved toward the strike point

by a number of coherence ratios, the contribution from the inner edge becomes negligible

once ψb >> ψa. Although the entire leg is utilized, the SOL efficiency drops to

εsol,in = 1/
√

1 +m2
∗. (34)

The optimal value for a single coherence width is larger by (1 + κ−1
` ), but the improvement

is always less than a factor of 2. For a wide region, the losses in other optimization criteria,

such as limiting power consumption, may be more important to consider. Figure 7(b) shows

the efficiency versus m∗ for both cases. The horizontal axis has two scales representing both

long and short divertor legs.

The definition of the surface current in Eq. 25 which connects the leg to the separatrix can

be integrated directly for a step-wise constant profile current density of arbitrary thickness.

Since we have already investigated the limiting values, rather than display the analytic

expression, Fig. 8 displays the result of integrating Eq. 25 over different thicknesses of the

current density layer for the case m∗ ' 4.5 where the coherence ratio is 2. The independent

axis is again chosen to be sinh−1 τ . If the outer position ψb is fixed, then for a thin bias region

ψa/ψb = 0.75 shown by the dashed (blue) curve in the figure, the amplitude of the surface

current is rKsol = 0.25, in arbitrary units, both along the leg and in the SOL. As the inner
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point is brought in towards the exact coherence ratio κ` = 2, the surface current amplitude

at the target rises to 0.5 and it reaches the maximum SOL value (1+0.5)/
√

1 + 4.52 = 0.33.

As the inner point is brought all the way to the strike point, the target surface current rises

to 2, while the SOL current is reduced to 1/
√

1 + 4.52 = 0.22, or 2/3 of the value for a single

coherence width.

D. Exponentially Decaying Profile

Assume that the maximum current density profile decays to small values far enough away

from the strike point due to the rapid decrease in plasma pressure and Jsat. The envelope

of the driven current decays exponentially with e-folding length λ. Since the value of λ

depends on flux expansion, it is most natural to define the e-folding length in flux space Λ2.

For instance, for long divertor legs, the e-folding length at the target is λ` = Λ2/`.

The radial profile of the current density is assumed to take the form

J(ψ) = Jmax exp (−ψ/Λ2) (35)

over the biasing region from ψa to ψb. The maximum surface current density that can be

drawn from the target is rtKsat = JmaxΛ
2. The leg current density simply satisfies

r|Kleg| = rtKsat exp(−ψ/Λ2)
∣∣ψa

ψb
. (36)

for phase at constant x (evaluated at large x). The SOL surface current is

rKsol = rtKsatRe(Γ(1 + im∗, ψ/Λ
2)eiϕsol)

∣∣ψa

ψb
(37a)

ϕsol = nζ −m log (`y/Λ2) + χ` (37b)

for phase at constant y (evaluated at large y), where Γ(1 + im∗, ψ) is the appropriately

defined incomplete gamma function.

Biasing the entire wetted area, as in the less flexible scenario, will only produce a relatively

small SOL surface current when σ` is much smaller than Λ2. The explanation is that

neighboring coherence zones will nearly cancel, so that the “last” positively reinforcing

coherence width will have much smaller current density than the peak. The asymptotic

form of Eq. 37a for ψa → 0 and ψb →∞ is

rKsol,all ' rtKsat

√
|2πm∗|e−|m∗π/2| sinϕ′sol (38a)

ϕ′sol ' ϕsol −m∗ + sign(m∗)π/4. (38b)
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Thus, the efficiency is

εsol,all '
√
|2πm∗|e−|m∗π/2|. (39)

In this limit, the result physically implies that the radial region that contributes most to

the integrated value is near ψ/Λ2 ' |m∗π/2|. The exponential factor yields a small value

for the coherent SOL current for large m∗.

Strong phase mixing can be remedied by utilizing a biasing profile that has at least one

sharp radial boundary. The key condition is that the edge potential must change over a

radial scale that is much shorter than the coherence width. For instance, if the thickness

of the biasing region is less than σ`, with sharp transitions to ground, then all radial points

will add coherently. In this case, the amplitude of the integrated current density will peak

at a location on the order of the decay length, instead of continuing to rise as in the case of

constant profile. Hence, there will now be an optimal placement of both the mean position

and the width. This phenomenon can be seen clearly from the asymptotic form of Eq. 37a

for large m∗

rKsol,cw '
rtKsat√
1 +m2

∗

(
ψ

Λ2

)
e−ψ/Λ

2

sinϕ`

∣∣∣∣∣
ψb

ψa

(40)

which peaks when ψ = Λ2. The maximum amplitude over toroidal phase now occurs for

exactly one coherence width with mean centered on the peak position
√
ψaψb = Λ2. This

same choice optimizes the efficiency for the exact expression Eq. 39. The exact value is

plotted versus the mean position in Fig. 7(a) (thick black). The large m∗ estimate of the

efficiencies is now

εleg,cw ' 2e−1 sinh (π/2m∗) (41a)

εsol,cw ' 2e−1 cosh (π/2m∗)/
√

1 +m2
∗. (41b)

The essential difference between the exponentially decaying and the step-wise constant cases

is that the current that can be drawn from the target is now reduced both by the smaller

coherence width and by the smaller limiting amplitude at the optimal position.

If the biasing region is much wider than the radial decay length, then the maximum SOL

current drive is obtained when one of the edges is placed near the peak at Λ2. The optimal

placement of the inner/outer edges can be found numerically by optimizing the efficiency
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εsol. Both possibilities are shown as cases: wide inner region ψa = 0 (dotted red) and wide

outer region ψb →∞ (dashed green) in Fig. 2. For large m∗, the efficiencies asymptotically

approach

εleg,in/out → e−1 (42a)

εsol,in/out → e−1/
√

1 +m2
∗ (42b)

but these formulae underestimate the efficiency at low m∗. Figure 7(a) plots the efficiency

versus the edge placement for two cases. The case of the inner target is plotted vs. the inner

edge position ψa (dotted red) for the fixed outer edge position ψb ' 1.19. This ψb yields the

largest value of εsol as ψa → 0. The case of the outer target is plotted vs. the outer edge

position ψb (dashed green) for the fixed inner edge ψa ' 0.924. This ψa yields the largest

value of εsol as ψb → ∞. Again there are logarithmic oscillations with scale κ`, before the

limiting values are reached. Figure 7(b) plots the efficiency numerically optimized over edge

placement with the same color coding as the other figures. Note that at low m∗, the outer

configuration can be as efficient as the optimal case of a single coherence width.

Phase mixing is weaker for short legs than for long legs. The preceding results are valid

as long as one makes the replacement m∗ → m∗/2. Figure 7(b) shows the efficiency of εsol

versus m∗ for both long and short divertor legs by showing the relevant scales. If the entire

target is biased, the analog of Eq. 38 leads to an 11% reduction for m∗ = 4.5.

VI. SOL MAGNETIC PERTURBATION

The magnetic perturbation generated by the SOL current can be estimated from the

tangential discontinuity of the field across the current carrying layer

B̃sol = 2πKsol. (43)

In Part II, it will be shown that the SOL perturbation field is close to being completely pitch-

resonant (m = qn) for flux surfaces near the SOL current. If one assumes that the SOL

current is close enough to the separatrix and the q profile does not change too quickly, the

detailed calculation for the resonant amplitude modifies the result by factors of order unity

for flux surfaces within a region near the edge. Thus, the previous estimates for the SOL

magnetic perturbation will also be an order of magnitude estimate for the RMP amplitude
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contributed by the SOL field

|B̃sol
nm| ∼ εsolB̃sat. (44)

Whether ELM control can be achieved depends on the threshold value of B̃nm/Bt and,

thus, the SOL efficiency that must be achieved. For the parameters in Table II, estimates for

B̃sat/Bt in Table II are larger than nominal values of 1−5×10−4 by factors of ∼ 1−100. This

implies that one may require a wide range of efficiency. Table III lists the efficiencies that

can be obtained for a variety of m∗ for all of the radial biasing strategies that were discussed

in Section V. This information is transposed in Table IV which shows the m∗ required to

achieve a given efficiency for the various techniques for the various target efficiencies. If

only 10% efficiency is required, any optimization technique will suffice as long as m∗ ≤ 4, 8

(long, short). The short divertor leg configuration can exceed 25% efficiency even when

biasing the entire target for m∗ = 3, but achieving this efficiency with a long divertor leg

would require at least one of the optimization techniques even for m∗ = 2. Obtaining 50%

efficiency requires a step-wise constant current density profile, unless the configuration can

achieve m∗ ≤ 1, 2 (long, short).

In Part II, it will be shown that the divertor leg perturbation field produces an exponen-

tially small RMP contribution at large m∗. The divertor leg perturbation field can make a

contribution if the combination of m∗ and divertor leg length cause the entire divertor leg

current to be phase at a given toroidal angle. The characteristic value of the field produced

in this case can be estimated by assuming that the entire lobe of current sits near the X-point

and acts at approximately a distance a away:

B̃lobe = 2Ilobe/ca. (45)

This value is tabulated in Table II for comparison and could be useful for diagnostic purposes.

The actual field that is generated depends on both the target efficiency and the way in which

the near-target current sources are closed, which typically leads to faster than 1/r decay.

The RMP produced is weaker than this estimate because much of this field is non-resonant.

VII. SUMMARY & DISCUSSION

A technique for analyzing the efficiency with which SOL currents will generate magnetic

perturbations near the X-point of a diverted tokamak has been developed. The spatial
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pattern of the SOL current density that is generated when the divertor targets are biased

in a toroidally asymmetric fashion was analyzed in detail. In particular, the amplitude of

the coherent surface current density that would propagate from the divertor target into

the SOL was determined quantitatively. It was shown that the phase coherence can be

improved by using short rather than long divertor legs. The sensitivity to the radial profile

of the driven current density was explored though profiles that are step-wise constant along

the divertor target and those that exponentially decay. The amplitude of the RMPs that

are generated by such currents was then qualitatively estimated. Part II (Ref. [36]) explores

the spatial structure of the resulting field in detail, and derives asymptotic estimates of the

Fourier spectrum of the field in magnetic coordinates. There, it shown that the qualitative

estimates presented here have the correct order of magnitude.

The limiting ion saturation current densities for ITER are able to support an appreciable

sheath current Jsat ∼ 100− 440 A/cm2 that is large enough to drive a significant magnetic

perturbation. After estimating the decay length of 2 − 3 cm in which to drive the SOL

current, the RMP upper limit is estimated from the surface current approximation B̃sat ∼

2πJsat∆r/c ∼ 100− 800G. The magnetic field perturbation near the X-point is even larger

by a factor of
√
`/2δr ∼ 6 − 7, due to considerations of flux expansion. This gain directly

corresponds to the greater width over which one would be able to drive the current in a

system with short divertor legs. If this surface current were to flow coherently through the

SOL, the experimental ELM control criterion would be exceeded by factors of 20− 200.

A more quantitative analysis of phase interference in the SOL demonstrates that destruc-

tive phase mixing will occur unless the radial profile is thinner than the coherence width

defined in Eq. 23. For a thin biasing region with long divertor legs, the perturbation field in

the SOL will be equal to that along the leg, and one can estimate |Bsol| = |Bleg|. This scaling

only persists as long as the radial width is below the coherence width σ` so that m∗ < π. As

the width is increased, the SOL current drive efficiency will be reduced by phase interfer-

ence. For profiles that are as wide as the coherence width, the maximum surface current is

smaller in the SOL than along the divertor leg by the factor ∼ 1/
√

1 +m2
∗ for long divertor

legs and ∼ 1/
√

1 + (m∗/2)2 for short legs. Optimization of the coherent surface current for

RMP applications therefore requires low n or low q∗ and leads to a compact divertor with

“short” divertor legs. If the limiting profile decays exponentially, not all of the target can be

utilized coherently and the limiting amplitude in the coherent region will be reduced. This

26



case can be optimized if the biasing region has at least one sharp edge. Optimally choosing

the inner or outer edge of a wide biasing region can still produce up to half of the maximum

value attained for a single coherence width.

If enough plasma is present in the outer SOL to cause the width of the current profile to

be considered an independent parameter, this could increase the range of performance of the

ELM control technique. In previous experiments on DIII-D [52], the biasing current density

achieved in the outer SOL was observed to be larger than that determined by the original

particle fluxes. In Ref. [52] (Figs. 3 and 4), heating of the plasma by the biasing technique

was implicated in changing the characteristics of the plasma above the sheath and even in

adding plasma to the far SOL.

Finally, note that the passive biasing techniques outlined in Ref. [23] are much better de-

signed for a high-power tokamak environment. Actively generating negative bias potentials

φb will accelerate the ions to higher incident energies and induce the additional ion heat flux

∆Qi = −eφbneui. Likewise, positive bias potentials will reduce the ion heat flux. If the total

flux Q = γTeneui is defined by the sheath transmission factor, estimated to be γ ∼ 7 − 8,

then the relative change in heat flux can be as large as ∆Q/Q ∼ eφb/γTe ∼ 1/4 − 1/2.

Although this additional heat flux is only a fraction of the original, one must assume that

the issue of large steady-state divertor heat fluxes can be solved with some margin. The

electric potential perturbation associated with the SOL current will act to cause additional

convection of turbulent heat flux and may help to mitigate this effect [23, 24]. Taken to-

gether, the combination of non-axisymmetric SOL current and electrostatic convection may

be a powerful technique for solving the problem of high target heat fluxes.
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TABLE I: Estimates for the range of parallel ion saturation current density that can be driven for

typical parameters of three different tokamaks.

R a ` λ ne Te Jmax Ksat m∗Ilobe

cm cm cm cm 1013cm−3 eV Acm−2 Acm−1 kA

ITER 620 200 100 2-3 20-200 1-20 100-400 200-1000 20-100

DIII-D 165 55 20 2-3 1-20 1-40 5-40 10-100 0.2-3

MAST 85 65 100 2-5 0.05-0.3 10-40 0.4-2 0.7-9 0.07-1

TABLE II: Upper limits for the magnetic field perturbation corresponding to the parameters of

Table I. The resonant field in the SOL must be multiplied by the efficiencies εsol.

Bt B̃sat B̃sat/Bt m∗B̃lobe m∗B̃lobe/Bt

104G G 10−4 G 10−4

ITER 5.3 100-800 20-200 20-100 4-30

DIII-D 2.0 6-80 3-40 0.7-10 0.4-5

MAST 0.5 0.4-6 0.9-10 0.04-0.6 0.1-1
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TABLE III: The SOL efficiency in % (Eq. 30b) obtained for various optimized geometric config-

urations. Labels: “step”=step profile, “exp”=exponential profile, “cw” = single coherence width,

“out”=optimized outer target plate, “in”=optimized inner target plate, ”all” = entire target plate.

m∗ = 1 2 3 4 long

m∗ = 2 4 6 8 short

step cw 74 54 43 35

step in 71 45 32 24

exp cw 60 35 24 18

exp out 60 31 17 11

exp in 53 23 14 10

exp all 52 15 4 1

TABLE IV: The value of m∗ required to obtain various levels of SOL efficiency (Eq. 30b) for

various geometric configurations. Smaller values of m∗ would achieve higher εsol. Included for

reference are the short leg values which are exactly 2× the long leg values. Labels; see Table III.

long short

εsol = 50% 25% 10% 50% 25% 10%

step cw 2.3 6.4 18.4 4.6 12.7 36.8

step in 1.7 3.9 9.9 3.5 7.7 19.9

exp cw 1.3 2.9 7.3 2.6 5.7 14.7

exp out 1.3 2.3 4.2 2.5 4.6 8.4

exp in 1.1 1.9 3.9 2.1 3.8 7.9

exp all 1.0 1.6 2.3 2.1 3.2 4.6
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FIG. 1: (Color online) Profile of the n = 3 parallel current perturbation that would be driven

by alternately biasing the target at a set of 6 locations on the divertor floor near the outer strike

point.
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FIG. 2: (Color Online) The driven current density profile across the target with mean value

Javg, distance from the strike point δψ, and width ∆ψ is limited by the ion saturation current

Jsat ∼ exp(−ψ/Λ2) (thick black). Possible radial profiles depending on the biasing geometry: thin

region equal to one coherence width for m∗ = 4.5, ψ/Λ2 = [0.5, 1] (thin blue); wide inner region

ψ/Λ2 = [0, 1] (dotted red); wide outer region ψ/Λ2 = [0.5,∞] (dashed green).
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FIG. 3: (a) The divertor region near the X-point. (b) The separatrix defining the magnetically

confined plasma, private flux, and scrape off layer regions for a simple two-wire model.
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FIG. 4: (Color online) Contours of the parallel current density, assumed to be constant along field

lines, for the case m∗ = 4.5 and `/δ = 25. The current source takes constant phase within the

toroidal plane ζ = 0 and across the target plate for (a) long legs x = ` (Eq. 19) and (b) short

legs y = x (Eq. 20). Black hyperbolic lines denote flux surfaces and letters a,b,c,d,e mark distinct

extrema of current density.
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FIG. 5: (Color online) For the three radially separated flux surfaces connected to the target shown

in (a), the current density (b) and phase difference (c) is shown as a function of sinh−1 τ (Eq. 15)

for constant ζ. Here, m∗ = 4.5 which corresponds to Fig. 4(a). The solid black curve is located at

an arbitrary reference position δψ that defines ∆ϕ = 0. Inner surface: ψ ' 0.71δψ (dotted red);

outer surface: ψ ' 1.4δψ (dashed blue).
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FIG. 6: (a) (Color online) Color contours of a thin parallel current density profile after “unwrap-

ping” along the central flux surface. (b) The magnitude of the surface current density (normalized

to the peak value) needed to represent the current density in part (a). Letters a,b,c,d,e mark the

same extrema as in Fig. 4(b).
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FIG. 7: (Color online) (a) The SOL surface current drive efficiency εsol (Eq. 30b) for various

geometric configurations of the biasing region; m∗ = 4.5, 9 for long, short legs. Step profile plotted

vs. inner edge ψa with outer edge ψb = 1 (thin blue). Exponential profiles: plotted vs. inner edge

ψa with optimum outer edge ψb ' 1.19 (dotted red); plotted vs. outer edge ψb with optimum inner

edge ψ ' 0.924 (dashed green); plotted vs. mean
√
ψaψb, single coherence width (thick black).

(b) Efficiency vs. m∗: bottom axis for short legs, top axis for long legs. Labels: “Step” profiles

ψb = 1 (shaded blue): “cw” = single coherence width (dot-dashed purple); “in” = inner target

plate ψa = 0 (thin blue). “Exp”onential profiles (shaded grey): “cw” = single coherence width,

optimum
√
ψaψb = 1 (thick black); “in” = inner target plate ψa = 0 with optimized outer edge ψb

(dotted red); “out” = outer target plate ψb → ∞ with optimized inner edge ψa (dashed green);

“all” = entire target (thin dot-dashed black).
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FIG. 8: (Color online) The surface current density defined by Eq. 25 is shown versus sinh−1 τ

(Eq. 15) for various thicknesses of current density; same case as Fig. 4(a): short divertor legs

and m∗ = 4.5. The outer edge ψb is fixed, while the inner edge ψa is varied: a “thin” region

ψa/ψb = 0.75 has the same maxima along both the leg and the SOL (dashed blue); the largest

SOL surface current is achieved at the coherence ratio ψa/ψb ' 0.5 (solid black); the inner edge is

moved to the strike point ψa = 0 (dotted red).
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